Team expects, may be useful, could be used, prototype, are currently investigating and so on. Cool piece of technolgy, but no even mention when they’d expect that to be commercially available, if it’s even possible to manufacture in commercial scale. Like many other new battery chemistries and technologies, it shows promise and makes a good headline, but at this point that’s pretty much it.
To be fair, commercial long-life nickel-iron batteries are already being sold for grid storage. The main reason they aren’t used more widely is they cost more up front.
That’s ok, because they still cost less than alternatives over the full life span of the battery.
The risk is that the higher purchase cost required will likely be wasted as new battery tech surpasses it long before its life is over.
So for now, it’s all about weighing opportunity cost, tech lock-in, and early obsolescence
Team expects, may be useful, could be used, prototype, are currently investigating and so on. Cool piece of technolgy, but no even mention when they’d expect that to be commercially available, if it’s even possible to manufacture in commercial scale. Like many other new battery chemistries and technologies, it shows promise and makes a good headline, but at this point that’s pretty much it.
To be fair, commercial long-life nickel-iron batteries are already being sold for grid storage. The main reason they aren’t used more widely is they cost more up front.
That’s ok, because they still cost less than alternatives over the full life span of the battery.
The risk is that the higher purchase cost required will likely be wasted as new battery tech surpasses it long before its life is over.
So for now, it’s all about weighing opportunity cost, tech lock-in, and early obsolescence
Eh, give em the clout they need to develop it further.
Well tbf this was a university lab which isn’t focused on commercial production but just trying to prove their experiments